Detection power, estimation efficiency, and predictability in event-related fMRI.
نویسندگان
چکیده
Experimental designs for event-related functional magnetic resonance imaging can be characterized by both their detection power, a measure of the ability to detect an activation, and their estimation efficiency, a measure of the ability to estimate the shape of the hemodynamic response. Randomized designs offer maximum estimation efficiency but poor detection power, while block designs offer good detection power at the cost of minimum estimation efficiency. Periodic single-trial designs are poor by both criteria. We present here a theoretical model of the relation between estimation efficiency and detection power and show that the observed trade-off between efficiency and power is fundamental. Using the model, we explore the properties of semirandom designs that offer intermediate trade-offs between efficiency and power. These designs can simultaneously achieve the estimation efficiency of randomized designs and the detection power of block designs at the cost of increasing the length of an experiment by less than a factor of 2. Experimental designs can also be characterized by their predictability, a measure of the ability to circumvent confounds such as habituation and anticipation. We examine the relation between detection power, estimation efficiency, and predictability and show that small increases in predictability can offer significant gains in detection power with only a minor decrease in estimation efficiency.
منابع مشابه
Efficiency, power, and entropy in event-related fMRI with multiple trial types. Part II: design of experiments.
The performance of an experimental design for functional magnetic resonance imaging (fMRI) can be characterized by its estimation efficiency, which is the ability to make an estimate of the hemodynamic response, its detection power, which is the ability to detect an activation, and its conditional entropy, which is a measure of the randomness of the design. In Liu and Frank [Neuroimage 21 (2004...
متن کاملImproved detection of event-related functional MRI signals using probability functions.
Selecting an optimal event distribution for experimental use in event-related fMRI studies can require the generation of large numbers of event sequences with characteristics hard to control. The use of known probability distributions offers the possibility to control event timing and constrain the search space for finding optimal event sequences. We investigated different probability distribut...
متن کاملEfficiency, power, and entropy in event-related FMRI with multiple trial types. Part I: theory.
Experimental designs for functional magnetic resonance imaging (fMRI) experiments can be characterized by their estimation efficiency, which is a measure of the variance in the estimate of the hemodynamic response function (HRF), and their detection power, which is a measure of the variance in the estimate of the amplitude of functional activity. Previous studies have shown that there exists a ...
متن کاملAnalysis and design of perfusion-based event-related fMRI experiments.
Perfusion-based functional magnetic resonance imaging (fMRI) using arterial spin labeling (ASL) methods has the potential to provide better localization of the functional signal to the sites of neural activity compared to blood oxygenation level-dependent (BOLD) contrast fMRI. At present, experiments using ASL have been limited to simple block and periodic single-trial designs. We present here ...
متن کاملComparison of block and event-related fMRI designs in evaluating the word-frequency effect.
Printed word frequency can modulate retrieval effort in a task requiring associative semantic judgment. Event-related fMRI, while avoiding stimulus order predictability, is in theory statistically less powerful than block designs. We compared one event-related and two block designs that evaluated the same semantic judgment task and found that similar brain regions demonstrated the word frequenc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- NeuroImage
دوره 13 4 شماره
صفحات -
تاریخ انتشار 2001